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ABSTRACT

Objective: To model cumulative coronavirus disease 2019 (COVID-19) case growth in various regions.

Methods: Publicly available time series data of cumulative COVID-19 cases form the John Hopkins
University were used including reports up to 29 March 2020. A Bayesian hierarchical five-parameter
logistic model was fit to observed data to estimate and project the cumulative number of cases in all
regions and countries listed in the John Hopkins University dataset with at least one case. Projections
for six regions (Hubei in China, South Korea, Germany, United States, Brazil, South Africa) were

investigated in detail.

Findings: The proposed model approximated the observed numbers of COVID-19 cases very well and
could be used to derive predictions. It provides information on the number of expected cases at the
end of the current infection wave, on the time point when half of these cases are infected, and on
the shape and pace of the long-term course of the epidemic. The average population model suggests
that after two to three weeks of limited growth, a substantial case growth phase of five-to six weeks
follows, before growth becomes limited again. Half of the expected number of cases is reported at
about 40 days after the first documented case. However, regional variation of this course is

considerable, as shown also by the six illustrative cases.

Conclusion: Although the model’s predictive validity needs further confirmation, the presented

approach is likely to offer valuable insights into understanding and managing COVID-19.



What was already known about the topic concerned

Projecting the number of cases affected by emerging infectious diseases like COVID-19 is challenging.
Tradition epidemiological approaches, such as deterministic compartmental and stochastic
transmission models, are increasingly used to predict COVID-19 case growth under certain
circumstances. However, commonly these models allow confident conclusions only when it is known

with sufficient certainty that the circumstances meet the modeling assumptions.

What new knowledge the manuscript contributes

A hierarchical logistic model is introduced to describe and predict the cumulative number of COVID-
19 cases for each day after the first case was documented in every region with at least one case as of
29 March 2020. The presented model combines plausible theoretical assumptions with a data-driven

approach and shows favorable properties both regarding accuracy and interpretability.



INTRODUCTION

The coronavirus disease 2019 (COVID-19) poses a global threat to public health. Obtaining valid
epidemiological information on transmission dynamics, severity, susceptibility, and the effects of control
measures has a high priority.%2 When knowledge on the epidemiological attributes of COVID-19 will have
become available, powerful transmission models can be built, which are capable of providing valuable
insights for health-care policy making.? For COVID-19, such models are being continuously developed and

used to explain events retrospectively or to project the course events in a range of possible scenarios.*®

In addition to modelling, day-to-day policy decision-making and public impression are guided by further
sources of information. A major piece of data probably considered in most decisions and presented in
almost every news broadcast is the country-level number of confirmed COVID-19 infections and deaths.
These figures are publicly available on a daily basis, easy to communicate, and also recommended for
surveillance by the World Health Organization.’ Publicly available data have been shown to be able to
provide epidemiological inferences of public health importance about the Middle East respiratory

syndrome-related coronavirus.®®

As long as epidemiological knowledge on COVID-19 is limited, traditional epidemiological modelling
studies are obliged to make several assumptions (for example about the reproduction number and the
incubation period of the infection). Thus, in countries, regions, and settings that are insufficiently covered
by these assumptions or where it is unclear, which assumptions are reasonable, applicability of the
model-based predictions remain largely uncertain. In addition, it is not always clear how the results of

traditional modelling studies can be “expressed in the language of public health practice” 13

In order to enrich existing modelling approaches, the objective of the present study was to create a
descriptive mathematical model of the growth of the publicly reported cumulative number of confirmed
COVID-19 cases in each region with at least one confirmed case as of 29 March 2020. In addition to
description, the model was expected to be capable of providing predictions of the projected course of

cumulative case numbers.



METHODS

Data source

Data on confirmed infections were abstracted from the 2019 Novel Coronavirus COVID-19 (2019-nCoV)
Data Repository by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE).%13
In the repository, the number of confirmed infections are organized as time series data with daily records.
For some countries, such as China, numbers for distinct provinces are reported, while for others, country-
level data are provided. According to the JHU CSSE, the repository relies upon data from multiple sources,
including the World Health Organization, the Chinese Center for Disease Control and Prevention, the
Centers for Disease Control and Prevention, and the European Centre for Disease Prevention and

Control.3

Data preprocessing

Data from the smallest possible geographical units defined by the JHU CSSE were used without change or
aggregation (termed ‘regions’ in the following). Only regions with at least on confirmed case up to 29
March were considered. Instead of using calendar dates, time was scaled to start with the day of the first
reported case in the database for each region, respectively. This means that day 1 can fall on different
calendar dates for different countries. The reason for choosing this time scale was to unify the starting
point for the cumulative case growth across different regions which may have been reached by COVID-19

several weeks apart.

Statistical model

The statistical approach was based on the three-parameter logistic model of self-limiting population
growth, which has a long history in ecology.’* The parameters of this model are the upper asymptote (the
maximum size of the population), the inflection point (the point in time when growth begins to slow
down), and the slope (the rapidity of reaching the upper asymptote) of the sigmoid logistic curve. Two
parameters were added to the three-parameter model. First, modelling a lower asymptote was necessary

to account for the fact that the first reported number of confirmed cases was more than one for several



regions. Second, an asymmetry parameter was introduced to be able to describe non-symmetrical
developmental trajectories of case growth, which can be expected due to the presence of mitigation
measures.® Among other applications, multi-parameter logistic models are frequently used in bioassay

studies to analyze dose-response curves.'>®

Fitting the model to aggregated global data or to data from each region separately would be difficult, if
possible at all, due to the low number of data points available for each analysis. Therefore, the model was
formulated hierarchically, assuming that the parameters for each region stem from respective global
distributions. The resulting random-effects model uses all available information effectively in a single

framework but can still account for heterogeneity between regions.'’

The applied hierarchical five-parameter logistic model was based on the five-parameter logistic equation
reported in an overview by Gottschalk and Dunn?® and defined the number of cumulative cases Y on day t

in region r as:

ar—dy

Vi =1 dy + 57 | * e®""tr, with

(1+6)")
In(a,) ~dnorm(theta,, var,),
b,.~dnorm(thetay, vary),
c,~dnorm(theta., var.),

In(d,) ~dnorm(thetay, vary),
gr~dnorm(thetay, vary), and
In(erry,) ~dhalfnorm(0, vary,,),

where g, b, ¢, d, and g are the parameters of the logistic function, err is the error term, In refers to the
natural logarithm, e is Euler’s number, dnorm refers to a normal distribution with mean theta and
variance var, and dhalfnorm refers to a non-positive half-normal distribution. Due to model definition and

restriction of the parameter space to reasonable values, g, ¢, d, and g were constrained to be positive,



and b was constrained to be negative.” The error term was assumed to follow a half-normal distribution

because the true numbers can be higher, but not lower than the observed numbers.

Two additional parameters were calculated, the time point of median infection mi as

1/b
’

mi=c* (Zl/g - 1) and

the inflection point of the logistic curve ip as

ip=cx*(1/g)"P.

A brief guidance to the interpretation of the model parameters is given in Table 1.

Table 1. Interpretation of model parameters

Abbreviation Parameter

Interpretation

a upper asymptote

b slope

c position

d lower asymptote

g asymmetry

mi median infection

ip inflection point

theta population mean

var population
variance

maximum number of cases at the end of the infection wave,
when further growth is negligible

approximate growth rate or rapidity of reaching the maximum
number of cases from the beginning of the exponential
infection phase

approximate time point of the transition phase between the
beginning of the exponential infection phase and the end of
the infection wave

number of cases at the beginning of the infection, here the
first non-zero number in the dataset

parameter influencing the growth rate, accounting for
possible improvement or worsening of the situation
depending on the context

time point, at which half of the expected maximum number of
cases is infected

time point, at which the growth rate reaches its maximum
and begins to slow down

average of the respective parameter across regions that
contributed data to the analysis

variance of the respective parameter across regions that
contributed data to the analysis

Note: as the meaning of the parameters can strongly depend on the values of the other parameters
and the characteristics of the analyzed data, the explanations should be considered approximate.



Assumptions

A major assumption of the model is that the form of the growth curve of the cumulative number of
cases can be approximated by the five-parameter logistic curve described above. This has some
theoretical plausibility due to resemblance to modelling self-limiting population growth in ecology
and investigating pharmacological effects in receptors with multiple binding sites, but the presented
approach should nevertheless be considered as empirical, descriptive, and data-driven to a

substantial degree.

A second assumption refers to the normal distribution of the (logarithmic) parameters across regions
(so called ‘random-effects’). This is difficult to justify on a purely theoretical basis but has become
common practice in the method of meta-analysis, aiming to combine findings from multiple studies
on the same phenomenon.*8 |n plain language, under consideration of the parameters of the
logistic curve, the random-effects assumption reflects the belief that the course of events during
COVID-19 is similar across different regions, although the regions may differ regarding the number of
ultimately infected persons, the time and speed of the intensive case growth phase, as well as the

timing and success of mitigation measures.

A consequence of the random-effects similarity assumption is that in case data are available only on
a few time points for a region, information is borrowed from regions with more information on the
estimated parameters. This equals to assuming the average case (adapted to the available data
points) in case of missing information and enables prediction irrespective of the amount of available

data, although uncertainty of predictions based on few data points is expected to be large.

Estimation

Computations were performed in a Bayesian framework due to the strengths of Bayesian approaches
in case of substantial model complexity and presence of sparse data. Markov chain Monte Carlo
sampling methods were utilized in WinBUGS version 1.4.3,° called from R version 3.6.1%° with the
package R2WinBUGS®. For estimation, the logarithm of both the number of cases and the logistic

equation were used in order to being able to account for substantial variance in the scale of the case

8



numbers across regions, to simplify the modelling of the error term, and to improve convergence.
The annotated WinBUGS code is provided in Supplement 1. Parameter estimates were given
uninformative priors, and results were obtained from 60,000 iterations with a thinning rate of 60
after dropping 40,000 burn-in simulations. Three independent Markov chains were run with different
starting values that were sampled randomly from a range of reasonable values derived from
theoretical considerations and small-scale test runs. Convergence was checked visually and with
Gelman and Rubin's convergence diagnostic.?? Approximate global model fit was assessed by
comparing the total standardized deviance with the number of data points. As a measure of
uncertainty, 95% credible intervals were calculated for all parameters. Credible intervals describe the
range of values within which a parameter falls with a 95% probability and correspond roughly to

confidence intervals in frequentist statistics.

Region-specific analyses

In order to illustrate the application of the model, results from six geographically diverse regions are
presented in detail: Hubei province in China, South Korea, Germany, United States, Brazil, and South
Africa. These regions were selected a priori and thought to represent regions in different phases of
the COVID-19 pandemic. The growth of the number of confirmed COVID-19 cases was modelled for
120 days from the first case, thus, it included both retrospective description and prospective

prediction of the number of cases affected by COVID-19.

RESULTS

Data availability

As of 30 March 2020, data on confirmed COVID-19 cases were listed from 253 regions in the JHU
CSSE database. Two listed regions did not report any cases and were excluded from analysis (labelled
as ‘Canada, Diamond Princess’ and ‘Canada, Recovered’, possibly erroneous entries). The first entry

was from 22 January and the last from 29 March, resulting in maximum 68 days of observation,



although most regions reported the first conformed case after 22 January and therefore contributed
less than 68 days of data. A total of 7901 data points form 251 regions (at average, 31.48 days per

region) were included in the analysis.

Population findings

Globally, the model fit the data excellently (total residual deviance 7897.65, which is essentially
identical to the number of data points). The population curve shows that it takes the disease an
average of about 15 days after reporting the first case to enter a clearly noticeable growth phase and
the maximum number of cases is reached approximately after 100 days, although uncertainty is

considerable (Figure 1).

Figure 1. Estimated average population curve of COVID-19 case growth
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Legend: The solid blue line shows the estimated mean number of cumulative cases. The blue dotted
line shows the 95% credible interval of the estimates. The black horizontal dashed line shows the
mean of the estimated number of total cases. The black vertical dashed line shows the estimated
time point of mean infection, i.e., when half of the estimated number of total cases is infected.

10



Population parameters are listed in Table 2. The upper asymptote (parameter a) shows substantial
variance across regions as expected due to various population sizes. The slope of the population
curve (parameter b) is substantially different from one and varies widely across regions. Both the
average median infection (parameter mi) and the average inflection point (parameter ip) indicate the
highest growth rate at around 4015 days after the first case, but the position of the curve on the time
axis (parameter c, the major determinant of mj and ip) shows a very large variation across regions.
The mean and variance of the lower asymptote (parameter d) indicates that for most, even if not for
all, regions, the first reported number of cases is close to one. The asymmetry of the population

curve (parameter g) is noticeable and varies considerably across regions.

Table 2. Population parameter estimates

Abbreviation Parameter Estimate 95% CI

theta.a population mean of the upper asymptote 754.96 511.85to 1106.55
var.(log)a variance of the logarithmic upper asymptote 5.95 4.74 t0 7.35
theta.b population mean of the slope -5.97 -6.67 to -5.33
var.b variance of the slope 8.56 6.10to 11.68
theta.c population mean of the position 41.13 36.73t045.74
var.c variance of the position 601.01 464.86 to 787.24
theta.d population mean of the lower asymptote 1.64 1.53to0 1.75
var.(log)d variance of the logarithmic lower asymptote 0.28 0.23t00.33
theta.g population mean of the asymmetry coefficient 0.89 0.78t0 1.02
var.g variance of the asymmetry coefficient 0.26 0.18t0 0.37
theta.mi population mean of point of median infection 40.05 35.56 to 44.53
theta.ip population mean of the inflection point 40.36 35.93t044.85

Note: see Table 1 for an explanation of the parameters; Cl=credible interval

Case studies

The estimated case growth in province Hubei, China, presumably the origin of COVID-19, displays a
rapid increase soon after the first reported case, with half of the expected number of approximately
69,400 cases infected after three weeks (Figure 2A). The projected numbers correspond well to the

observed values, with the exception of the consequences of the substantial change in reporting
11



practices on 13 February 2020, from when clinically diagnosed infections were included in addition to
laboratory-confirmed cases. But even under these circumstances, the credible interval of the

projection encompasses the observed growth about one week later and on.

In South Korea, the estimated growth curve remained flat for about four weeks before rising steeply
and reaching half of the expected number of 9,200 confirmed cases after six weeks (Figure 2B). The
form of the average projected curve deviates from the observed trajectory of cases, but as of the end

of March 2020, observations fall clearly within the credible interval.

In Germany, the initial phase of limited growth endured more than six weeks (Figure 2C). According
to the model, half of the expected number of cases is likely to be confirmed after around nine and a
half weeks (in the first days of April), and a total of 172,000 cases (with substantial uncertainty) are
estimated to be reported approximately by the end of week sixteen. Model estimates agree very well

with observed values so far.

The model estimates suggest that, as of the end of March 2020, the Unites States (Figure 2D), Brazil
(Figure 2E), and South Africa (Figure (2F) are two to three weeks away from reaching the point of
median infection. Due to the relatively early phase of the disease spread in these regions (according
to the reported cases), the upper bound of the credible interval of the maximum number of expected
cases is around six to nine times higher than the estimated mean, indicating a very high degree of

uncertainty of the projections.
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Figure 2. Estimated and observed COVID-19 case growth in six regions
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Legend: The red points connected with a red solid line show the reported number of confirmed
cases. The solid blue line shows the estimated mean number of cumulative cases. The blue dotted
line shows the 95% credible interval of the estimates. The black horizontal dashed line shows the
mean of the estimated number of total cases. The black vertical dashed line shows the estimated
time point of mean infection, i.e., when half of the estimated number of total cases is infected.
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Estimated parameters for each region are listed in Table 3 and can be used to plot the mean number

of estimated cases for any time point using the five-parameter logistic formula®.

Table 3. Parameters for each region

Region (country, median inflection
province, area) a b c d g infection point
Afghanistan 937.45 -5.63 51.4 1.05 1.03 52.45 52.31
Albania 719.13 -3.87 50.52 1.45 0.59 41.26 45.23
Algeria 2833.18 -6.64 62.82 1.08 0.57 55.24 57.99
Andorra 225.96 -10.9 17.88 1.05 2.15 19.56 19.2
Angola 130.92 -4.43 50.23 1.47 0.63 42.22 45.44
Antigua and Barbuda 396.98 -6.53 38.16 1.06 1.02 38.11 38.22
Argentina 5324.25 -6.08 55.63 1.14 0.59 48.79 51.25
Armenia 344.83 -7.01 18.17 1.06 1.75 20.19 19.73
Australia, Australian

Capital Territory 1036.85 -5.29 33.85 1.15 0.87 32.77 33.21
Australia, New South

Wales 11708.56 -8.84 73.19 3.79 1.37 77.16 76.21
Australia, Northern

Territory 411.37 -6.19 40.2 1.05 1.08 41.01 40.87
Australia, Queensland 8057.25 -9.25 77.84 4.03 1.11 79.41 79.04
Australia, South

Australia 5750.22 -8.87 78.64 1.98 1.14 80.56 80.1
Australia, Tasmania 728.22 -5.92 56.67 111 0.72 52.57 54.06
Australia, Victoria 10979.96 -9.39 80.92 3.29 1.21 83.51 82.87
Australia, Western

Australia 3261.93 -6.2 50 2.1 0.85 48.62 49.18
Austria 68507.64 -7.01 56.02 2.56 0.68 51.9 53.33
Azerbaijan 1277.71 -5.84 59.1 3.47 0.61 51.8 54.44
Bahamas 144.12 -4.56 50.99 1.16 0.64 43.88 46.85
Bahrain 995.75 -5.48 62.23 1.33 0.33 40.99 49.88
Bangladesh 96.47 -5.19 22.04 2.66 1 21.7 2191
Barbados 275.27 -4.16 46.69 1.54 0.61 39.16 42.29
Belarus 368.74 -4.65 44.33 1.1 0.75 41.3 42.53
Belgium 9016.66 -6.93 42.11 1.03 2.61 50.14 48.48
Belize 371.23 -6.26 49.64 1.5 0.98 48.72 49.25
Benin 71.49 -4.33 47.63 1.23 0.68 41.01 43.7
Bhutan 145.52 -5.83 56.82 1.07 0.94 56.3 56.63
Bolivia 372.35 -4.64 54.25 1.67 0.52 42.95 47.45
Bosnia and Herzegovina  2450.15 -5.6 47.71 2.13 0.71 44.1 45.47
Brazil 40236.59 -7.37 49.24 1.37 0.82 47.65 48.2
Brunei 105.37 -3.36 6.24 1.15 1.35 7.07 6.86
Bulgaria 933.22 -4.28 28.72 2.86 0.84 26.92 27.71
Burkina Faso 609.71 -4.73 2291 1.39 1.01 23.18 23.19
Burma 213.89 -4.69 45.93 4.16 0.73 4197.62 355.83
Cabo Verde 70.38 -4.12 50.56 1.61 0.6 45.15 46.63
Cambodia 170.91 -12.99 54.81 1.03 1.8 58.19 57.43
Cameroon 302.45 -6.18 24.92 1.53 1.12 25.63 25.49
Canada, Alberta 4449.45 -5.76 50.54 1.36 0.58 43.54 46.11
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Canada, British Columbia
Canada, Grand Princess
Canada, Manitoba

Canada, New Brunswick

Canada, Newfoundland
and Labrador

Canada, Northwest
Territories

Canada, Nova Scotia

Canada, Ontario

Canada, Prince Edward
Island

Canada, Quebec
Canada, Saskatchewan
Canada, Yukon
Central African Republic
Chad

Chile

China, Anhui
China, Beijing
China, Chongging
China, Fujian
China, Gansu
China, Guangdong
China, Guangxi
China, Guizhou
China, Hainan
China, Hebei
China, Heilongjiang
China, Henan
China, Hong Kong
China, Hubei
China, Hunan
China, Inner Mongolia
China, Jiangsu
China, Jiangxi
China, Jilin

China, Liaoning
China, Macau
China, Ningxia
China, Qinghai
China, Shaanxi
China, Shandong
China, Shanghai
China, Shanxi
China, Sichuan
China, Tianjin
China, Tibet

China, Xinjiang

China, Yunnan

11763.83
12.91
386.29
491.34

4089.51

521.07
1065.37
15553.19

420.9
57050.07
1745.91
457.11
4.84
101.48
18059.36
1011.47
525.19
590.03
309.35
129.4
1394.41
265.24
148.46
17331
330.51
491.96
1302.34
507.26
69366.25
1032.4
81.92
647.58
947.04
94.33
128.05
30.41
77.58
18.22
251.78
837.11
375.39
135.37
553.53
144.58
9.58
78.75
175.44

-9.02
-7.32
-4.72
-4.29

-7.13
-4.71
-8.82

-5.17
-8.05
-4.94
-6.44
-7.18
-5.06
-6.23
-4.8

-3.23
-3.89
-2.91
-2.07
-6.42
-3.29
-6.77
-5.25
-2.91
-6.56
-3.65
-7.99
-83

-5.25
-3.6

-4.37
-6.06
-6.79
-3.16
-1.07
-3.14
-3.66
-4.22
-2.36
-4.64
-3.46
-3.96
-4.88
-8.25
-5.11
-3.46

84.47
5.91

52.07
45.82

34.91

47.94
48.08
85.87

48.51
48.55
42.24
45.53
15.72
48.05
46.2

17.08
26.37
15.06
11.27
13.45
20.7

15.59
20.08
20.16
13.38
21.58
133

93.74
31.33
16.05
18.12
16.44
17.9

18.84
12.01
49.6

15.38
8.02

14.77
17.28
19.56
11.34
17.33
22.52
79.5

20.64
10.58

15

2.64
1.82
2.93
1.09

1.46

1.12
3.46
2.38

1.16
1.33
1.71
3.06
1.12
1.13
1.73
1.21
2.12
2.07
1.23
151
2.98
1.42
1.7

1.92
1.14
1.65
3.12
2.35
211
1.99
1.29
1.23
1.6

1.57
1.55
1.21
1.15
1.2

1.71
1.42
2.67
111
2.35
2.25
1.05
1.6

1.24

0.98
1.11
0.52
0.8

0.83

111
0.54
1.07

0.76
0.95
0.71
0.98
1.04
0.74
0.76
0.59
0.51
0.61
1.02
1.27
0.29
0.73
0.46
0.38
1.29
0.38
0.99
0.23
0.24
0.51
0.57
0.67
0.45
0.39
0.88
1.24
0.99
0.8

0.58
1.08
0.41
1.17
0.62
0.43
1.36
0.49
0.99

84.53
5.87

40.89
42.67

33.7

48.46
38.63
87.23

45.26
48.5
38.15
44.15
14.52
43.05
43.81
14.21
17.96
11.99
11.3
15.61
13.79
13.07
16.34
13.73
15
16.39
13.15
63.35
21.96
12.79
13.31
14.17
14.21
14.51
11.03
88.96
15.11
6.92
11.58
18.07
13.31
12.01
13.97
15.83
1165.46
15.76
10.47

84.57
5.9

45.33
43.98

34.18

48.46
42.34
86.93

46.52
48.57
39.72
44.86
15.12
45.06
44.67
15.25
21.11
13.12
11.33
15.05
16.79
14.01
17.78
16.42
14.59
18.48
13.25
77.36
26.25
14.01
15.19
14.96
15.62
16.25
11.41
75.21
15.25
7.36
12.78
17.89
15.8
11.86
15.19
18.54
156.72
17.69
10.54



China, Zhejiang
Colombia

Congo (Brazzaville)
Congo (Kinshasa)
Costa Rica

Cote d'lvoire

Croatia

Cuba

Cyprus

Czechia

Denmark

Denmark, Faroe Islands
Denmark, Greenland
Diamond Princess
Djibouti

Dominica

Dominican Republic
Ecuador

Egypt

El Salvador

Equatorial Guinea
Eritrea

Estonia

Eswatini

Ethiopia

Fiji

Finland

France

France, French Guiana
France, French Polynesia
France, Guadeloupe
France, Martinique
France, Mayotte
France, New Caledonia

France, Reunion

France, Saint Barthelemy

France, St Martin
Gabon
Gambia
Georgia
Germany
Ghana
Greece
Grenada
Guatemala
Guinea
Guinea-Bissau
Guyana

Haiti

1228.03
3584.17
1014
71.71
1709.75
3037.27
8248.09
2110.54
957.74
17242.5
1861.45
154.2
244.9
732.54
98.24
115.24
17100.98
2790.95
562.22
858.91
21.02
992.89
879.46
309.39
47.94
24.8
2179.69
72632.93
159.02
42.58
85.8
523.01
896.46
164
2102.14
88.02
150.5
7.52
1454
265.42
172469.22
3300.82
4178.8
107.7
76.46
1025.82
485.86
7.66
144.14

-6.12
-5.4

-4.36
-6.4

-5.34
-6.03
-6.89
5.5

-4.15
-6.41
-6.99
-7.67
-4.72
-6.52
-6.4

-5.54
-7.53
-8.63
-6.54
-4.86
-4.82
5.4

-6.44
-5.67
-3.81
-5.39
-9.52
-8.95
-4.56
-6.42
-4.32
-4.54
-5.19
-4.23
-5.69
-5.69
-5.23
-7.91
-4.9

-3.94
9.5

-5.29
-5.05
-7.55
-3.67
-5.85
-6.99
-7.27
-4.26

16.67
35.14
53.55
12.99
52.6
37
57.12
41.23
44.69
48.9
19.07
16.04
49.95
19.26
19.35
29.36
47.09
24.82
30.97
44.75
18.27
38.26
27.68
40.35
29.48
28.63
56.11
61.6
45.29
13.73
7.36
39.07
34.92
43.35
47.73
55.15
45.74
9.01
48.92
43.15
63.5
39.8
47.22
20.23
21.47
46.34
48.31
4.61
46.09

16

2.55
1.09
1.16
141
1.19
1.08
4.6
3.18
1.56
3.5
1.97
1.32
1.15
2.18
11
1.27
1.63
10.58
1.05
1.23
1.14
111
1.13
1.08
1.14
1.15
1.04
6.66
4.29
2.7
1.17
1.77
1.13
1.59
1.28
1.76
1.86
1.09
111
1.13
9.91
4.26
1.92
1.11
1.14
1.08
1.95
1.14
1.62

0.36
0.85
0.66
1.06
0.54
0.88
0.79
0.8

0.68
0.65
0.89
1.19
0.69
0.19
1.08
0.79
0.92
1.2

1.87
0.7

0.95
0.84
0.85
0.92
0.84
0.84
14

1.56
0.77
1.07
1.15
0.86
0.8

0.62
0.58
0.91
0.85
1.21
0.81
0.91
1.37
0.78
0.77
1.14
0.91
0.93
1.09
1.13
0.61

12.1
34.01
46.55
13.11
43.6
36.17
54.9
39.13
39.28
44.34
18.67
16.55
44.5
10.21
19.31
25.38
46.73
25.62
35.11
40.46
15.4
36.28
26.86
39.17
25.88
25.21
59

66
41.35
13.6
7.72
37.9
32.69
35.49
41.06
53.99
43.61
9.14
45.95
42.44
66.67
37.5
4451
19.67
20.29
45.96
48.57
4.66
37.4

13.96
34.5
49.34
13.11
47
36.52
55.71
39.99
41.52
45.98
18.81
16.43
46.58
14.58
19.4
27.01
46.9
25.43
34.17
42.12
16.56
37.09
27.16
39.66
27.56
26.63
58.31
64.97
43.03
13.7
7.65
38.5
33.6
38.74
43.54
54.53
44.5
9.12
47.2
42.96
65.91
38.39
45.6
19.93
20.89
46.21
48.68
4.66
40.92



Holy See
Honduras
Hungary
Iceland

India
Indonesia
Iran

Iraq

Ireland

Israel

Italy
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Korea, South
Kosovo
Kuwait
Kyrgyzstan
Laos

Latvia
Lebanon
Liberia

Libya
Liechtenstein
Lithuania
Luxembourg
Madagascar
Malaysia
Maldives
Mali

Malta
Mauritania
Mauritius
Mexico
Moldova
Monaco
Mongolia
Montenegro
Morocco
Mozambique
MS Zaandam
Namibia
Nepal
Netherlands
Netherlands, Aruba

Netherlands, Curacao

493.96
1172.99
2685.56
4365.6
3689.77
6282.07
44050.58
1348.82
22750.93
24883.82
107688.28
84.59
3378.05
196.51
1373.96
562.88
9205.68
238.23
482.97
923.86
212.94
1117.31
1980.22
10.9
2870.27
59.85
2593.93
3807.46
357.16
16605.2
27.3
1237.38
773.61
172.05
1294.73
4803.84
1997.8
228.84
10.77
753.06
4626.13
125.26
565.82
224.82
468.09
49675.32
1551.66
69.87

-7.62
-5
-5.88
-5.73
7.2
-5.21
-5.04
-6.17
-6.65
-7.68
-5.01
-2.91
-8.08
-8.87
-4.6
-4.86
-13.02
-3.15
-2.66
-4.46
-4.33
-5.01
-5.24
-4.05
-7.24
-8.39
6.8
-7.26
-4.61
-8.99
-2.98
-4.45
-4.38
-5.23
-4.28
-6.49
-5.07
-6.16
-8.26
-4.47
-6.43
-4.76
-6.59
-4.93
-11.51
-6.54
-5.79
-4.19

42.32
47.48
54.04
56.78
63.54
40.21
33.53
62.96
54.34
64.2

40.52
37.65
91.98
16.22
51.82
47.87
43.53
40.03
50.37
41.84
45.83
33.47
56.99
39.87
16.21
16.38
36.69
28.36
36.61
77.22
39.21
38.63
39.96
54.25
41.6

40.67
44.83
37.01
9.08

32.15
45.91
35.63
45.48
50.2

81.01
52.17
44.43
52.98

17

1.05
1.7

1.13
2.45
1.76
2.47
1.15
1.19
1.18
2.33
1.21
2.87
1.05
2.49
1.27
7.14
191
1.29
1.98
1.79
1.07
1.08
1.29
1.11
1.07
1.05
1.13
2.03
11.71
1.92
1.57
2.49
1.18
1.78
3.98
1.18
1.06
1.08
151
13
1.19
1.93
1.93
1.02
1.18
2.08
1.19

1.23
0.72
0.58
0.55
1.49
0.9

0.8

0.41
0.67
0.66
2.81
0.78
0.4

191
0.54
0.67
0.85
0.42
0.91
0.63
0.58
1.01
0.8

0.68
1.14
1.25
1.21
1.05
0.72
1.08
0.56
0.68
0.77
0.76
0.66
1.02
0.72
11

1.35
0.72
0.85
0.79
1.06
0.75
1.88
0.6

0.77
0.63

44.06
43.37
46.95
48.02
68.71
39.87
31.8
48.21
50.07
59.34
52.42
33.66
75.32
17.83
41.39
42.37
42.73
Inf
54.53
35.46
36.84
34.44
54.35
32.59
16.5
16.99
38.47
28.83
31.25
78.4
28.54
34.1
36.96
50.22
35.7
41.12
41.29
37.89
9.48
28.27
44.54
31.05
50.44
45.93
87.14
46.27
41.79
45.07

43.66
44.96
49.53
51.35
67.49
40.14
32.4
54.09
51.58
61.01
49.93
35.7
81.82
17.47
45.45
44.49
42.98
Inf
54.3
37.98
40.65
34.31
55.43
35.81
16.46
16.84
38.05
28.74
33.4
78.14
33.38
35.95
38.19
51.83
38.05
41.07
42.66
37.72
9.39
29.75
45.08
329
47.69
47.6
85.78
48.37
42.78
48.37



Netherlands, Sint
Maarten

New Zealand
Nicaragua

Niger

Nigeria

North Macedonia
Norway

Oman

Pakistan

Panama

Papua New Guinea
Paraguay

Peru

Philippines

Poland

Portugal

Qatar

Romania

Russia

Rwanda

Saint Kitts and Nevis

Saint Lucia

Saint Vincent and the
Grenadines

San Marino
Saudi Arabia
Senegal
Serbia
Seychelles
Singapore
Slovakia
Slovenia
Somalia
South Africa
Spain

Sri Lanka
Sudan
Suriname
Sweden
Switzerland
Syria
Taiwan
Tanzania
Thailand
Timor-Leste
Togo
Trinidad and Tobago
Tunisia

Turkey

222.97
11299.36
353.4
712.45
607.87
2733.24
12395.72
387.34
2222.44
5305.19
356.66
354.91
5407.45
1411.64
12895.15
43766.88
533.57
13783.17
11172.4
669.72
419.74
468.45

257.52
329.79
9944
879.61
3504.02
18.78
748.52
439.36
1202.2
1033.26
15893.99
156055.04
126.81
111.27
9.17
3329.69
86174.51
330.84
213.48
17.54
16216.94
370.88
25.56
144.07
3115.09
52022.27

-4.84
-7.78
-5.36
-4.69
-7.55
-6.5

-4.95
-6.11
-8.3

-5.41
-7.64
-4.79
-5.7

-9.37
-5.66
-6.82
-9.37
-6.19
-9.18
-4.28
-6.86
-5.92

-8.02
-2.55
-6.29
-5.09
-4.19
-3.64
-8.57

-3.79
-6.52
-5.81
-8.73
-17.28
-4.86
-7.27
-8.68
-6.93
-5.04
-8.26
-4.47
-9.51
-7.44
-13.74
-5.53
-5.64
-6.71

49.28
48.36
47.07
45.12
36.52
50.93
42.94
68.52
28.44
49.25
54.16
55.79
45.83
51.61
49.43
49.95
13.93
52.5

68.24
46.41
48.15
48.96

59.24
20.6
49.37
43.3
38
36.63
93.3
19.63
24.89
42.61
49.31
54.45
50.35
54.85
9.73
44.47
56.33
40.91
97.82
9.81
86.62
51.25
15.6
16.96
53.68
26.03

18

1.19
221
1.46
1.18
1.17
1.08
1.16
2.5

3.54
1.25
1.07
1.18
1.23
2.46
1.22
2.9

4.01
1.93
1.94
1.16
1.96
181

1.05
1.09
1.17
2.55
1.08
1.64
1.53
1.17
1.87
1.07
1.15
1.45
1.03
1.17
1.09
1.04
1.29
1.15
1.59
1.18
21.14
1.08
1.05
2.01
11
1.45

0.69
1.01
0.82
0.71
1.22
0.88
0.75
0.42
1.04
0.51
1.19
0.58
0.63
1.93
0.67
0.64
1.04
0.85
1.38
0.67
111
0.92

1.24
141
0.68
0.92

0.65
0.23
0.95
0.81
1.02
0.76
1.58
2.35
0.73
1.17
1.82
0.59
0.79
0.21
0.92
1.13
1.16
1.85
0.77
0.73
0.89

44.16
48.79
43.89
40.65
37.97
50.09
40.23
52.68
28.71
39.97
55.61
46.46
40.92
56.58
44.92
45.46
13.98
51.15
71.86
40.31
48.72
47.64

61.2

25.57
45.37
42.57
38.69
29.94
64.96
19.87
23.72
42.88
46.57
58.66
53.57
50.05
9.82

48.72
50.28
36.94
64.78
8.89

88.44
52.42
16.52
15.78
49.96
25.59

46.19
48.73
45.21
42.39
37.63
50.44
41.27
58.96
28.66
43.43
55.36
50.02
42.76
55.48
46.55
47.01
13.98
51.68
70.99
42.71
48.78
48.3

60.78
24.29
46.85
42.94
38.68
33.04
78.09
19.89
24.23
42.91
47.56
57.68
52.91
51.93
9.83

47.76
52.42
38.5

80.41
9.27

88.01
52.23
16.31
16.29
51.33
25.77



Uganda 329.21 -4.72 29.84 1.16 0.84 26.44 27.84
Ukraine 6982.87 -7.27 40.4 1.06 1.04 40.96 40.86
United Arab Emirates 2110.77 -7.64 85.62 5.82 0.73 80.86 82.49
United Kingdom 179250.03 -9.55 74.22 4.63 1.08 75.33 75.07
United Kingdom,

Anguilla 582.29 -6.68 46.39 1.91 1.04 45,93 46.31
United Kingdom,

Bermuda 497.52 -4.73 46.66 1.72 0.64 40.31 42.82
United Kingdom, British

Virgin Islands 577.97 -6.71 46.82 1.92 1.02 46.2 46.6
United Kingdom,

Cayman Islands 81.65 -4.86 38.99 1.09 0.83 36.55 37.57
United Kingdom,

Channel Islands 1428.48 -4.96 43.1 1.5 0.83 41.17 41.93
United Kingdom,

Gibraltar 427.45 -6.09 33.97 1.05 1.25 35.77 35.36
United Kingdom, Isle of

Man 32.16 -6.35 4.27 1.18 1.15 4.38 4.36
United Kingdom,

Montserrat 582.38 -6.57 32.84 1.07 1.03 32.76 32.88
United Kingdom, Turks

and Caicos Islands 617.06 -6.43 45.25 3.45 1 57.01 48.22
Uruguay 369.49 -3.78 12.32 2.53 1 11.94 12.14
us 2629030.61 -11.71 86.16 7.52 1.19 88.14 87.65
Uzbekistan 729.09 -3.47 41.97 1.24 0.77 38.1 39.88
Venezuela 306.92 -2.89 26.1 1.44 0.84 23.49 2471
Vietnam 176.52 -8.41 96.62 1.92 0.25 69.08 81.5
West Bank and Gaza 192.39 -3.79 53.25 1.76 0.49 37.29 44 .31
Zambia 1416.48 -5.91 30.66 1.88 0.95 30.28 30.49
Zimbabwe 243.76 -4.74 49.81 1.82 0.68 43,13 45.86

Note: the average number of cases y at day t after the first case can be estimated as y(t)=d+((a-
d)/(1+(t/c)b)"g, see text for further information.

DISCUSSION

Being able to monitor and predict the course of the COVID-19 pandemic in affected regions is

essential for the development and implementation of effective countermeasures. Here, a model of
cumulative case growth based on publicly reported data was used to identify trends which may be
informative of the future trajectory of the disease. Having both theoretically plausible (mechanistic)
and data-driven (empirical) components, the presented approach may be best categorized as a

‘hybrid’ model.1®

At first glance, it might be surprising that the model provides predictions without considering

explicitly which mitigation and control measures are taken by national and international institutions.
19



It seems to suggest a deterministic rather than a hypothetical future and thus appears to miss the
flexibility of offering different scenarios. The projections can probably be best considered as the most
likely course events, provided that the conditions remain sufficiently similar among regions. In a
statistical sense, the model uses information from regions dealing with COVID-19 for a longer time
period to inform predictions for regions that were reached by the disease later. Interestingly, this is
quite the same strategy that public health decision-makers apply when they review and reflect on
the experience made with COVID-19 in regions that were affected early. Thus, the mean estimates
may be used as benchmarks for navigating the disease, a kind of beacon in heavy fog. At the same
time, credible intervals around the point estimates are likely to encompass several possible courses
of future events. Here, credible intervals may be seen less as a measure of statistical uncertainty due

to randomness but rather as the bounds of different possible futures.

It is essential to point out the limitations of the model, which are strongly associated with its
assumptions. First, the model does not intend to project the true number of infections. Both its input
and its output relates to the reported number of confirmed infections, irrespective of the
poproportion of unrecognized cases, which is likely to vary strongly across regions due to variable
testing capacities and other factors. Second, predictions for regions that are extremely different from
most other regions may be untrustworthy. Third, if the five-parameter logistic curve ceases to be
able to approximate the cumulative case growth curve adequately, projections may be
uninformative. This might be the case if abrupt changes in the conditions occur. For instance, the
model may be of limited value if testing practices change radically (for example, if a country decides
to test very broadly after a phase of narrowly focused testing), if case counting and reporting are
restructured (as it was seen in the Hubei example), or if a new wave of infection is hitting. In
summary, homogeneity of conditions both among regions and across different time points is likely to
increase the accuracy of the projections. On the other hand, a substantial misfit between the model-
based predictions and the observations may be considered an early indicator of extreme conditions

or disruptive events which may go unnoticed otherwise.

20



The proposed model can be expanded to offer more flexibility. For example, one or more parameters
can be manipulated artificially in simulation studies to model effects of health care policy measures.
Furthermore, adding time-invariant covariates to explain parameters may reduce heterogeneity
between regions and increase the precision of projections. For example, it may be hypothesized that
the initial limited growth phase of the disease is longer in regions that were reached later by COVID-
19 (an effect on parameter c) or that regions with larger economical resources may report more
cases at average due to higher testing capacities (an effect on parameter a). Time-varying covariates
may be used to model changes in testing practices, to model further infection waves, or to

investigate the effects of mitigation measures.

Even if a thorough empirical evaluation of the proposed model will be possible only in the retrospect,
the first impression presented here suggests that postulating a multi-parameter logistic trend in the
cumulative number of COVID-19 cases that shares similarities across regions agrees well with publicly
reported data. Thus, it may be informative for further research activities and support policy makers

in monitoring and managing the disease.
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Kriston L. Projection of cumulative coronavirus disease 2019 (COVID-19) case growth with a
hierarchical logistic model

Supplement 1. Annotated WinBUGS code

# START
model{

# loop through data points
# n.data = number of data points
for (i in 1l:n.data){
# likelihood with half-normally distributed errors
# y = logarithmic number of cases
yI[i] ~ dnorm(mu[i], tau.e)l( ,mu[i])
# hierarchical logistic model with parameters a, b, c, d, ¢
# rid = region indicator
muli] <- log(
dirid[i]]+
(a[rid[i]]-d[rid[i]1])/
pow((1+(pow(time[i]/c[rid[i]], bLrid[i11))), glrid[i]l))
# deviance contribution of each data point
resdev[i] <- (y[i]l-mu[iD*(y[i]-mu[i]D*tau.e
+

# loop through regions
# nr = number of regions
for (k in 1:nr){
# half-normal distributions for log(a), b, c, log(d), g
log(a[k]) <- log.a[k]
log.a[k] ~ dnorm(theta.a, tau.a)l(0, )
b[k] ~ dnorm(theta.b, tau.b)Il(, 0)
c[k] ~ dnorm(theta.c, tau.c)1(0, )
log(d[k]) <- log.d[k]
log.d[k] ~ dnorm(theta.d, tau.d)I1(0, )
g[k] ~ dnorm(theta.g, tau.g)I1(0, )
# calculate median infection and inflection point
mi[k] <- c[k]*pow((pow(2,(1/g9[k]1))-1),(1/b[K]))
;p[k] <- c[k]*pow((1/g[K]1),(1/b[k]))

# project values for selected regions
# loop through selected regions
# npreg = number of selected regions
for (m in 1:npreg){
# loop through time points
# ptime = number of projected time points in days
# pmu = projected values (logarithmic)
for (t in 1l:ptime){
pmu[m,t] <- log(
d[preg[m]]+
(a[preg[m]]1-d[preg[m]])/
§OW((1+(DOW(t/C[preg[m]], blpregiml1))). glpregimll))
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# project population values

# loop through time points

for (t in 1l:ptime){
# popy = projected population values (logarithmic)
popy[t] <- log(
exp(theta.d)+
(exp(theta.a)-exp(theta.d))/
pow((1+(pow(t/theta.c, theta.b))), theta.qg))

}

# calculate median infection and infection point for population
popmi <- theta.c*pow((pow(2,(1/theta.g))-1),(1/theta.b))
popip <- theta.c*pow((1/theta.g),(1/theta.b))

# vague normal priors for population means

theta.a ~ dnorm(0, 1.0E-4)
theta.b ~ dnorm(0, 1.0E-4)
theta.c ~ dnorm(0, 1.0E-4)
theta.d ~ dnorm(0, 1.0E-4)
theta.g ~ dnorm(0O, 1.0E-4)

# vague gamma priors for precision parameters
tau.a ~ dgamma(0.001, 0.001)

var.a <- 1/tau.a
tau.b ~ dgamma(0.001, 0.001)
var.b <- 1/tau.b
tau.c ~ dgamma(0.001, 0.001)
var.c <- 1/tau.c
tau.d ~ dgamma(0.001, 0.001)
var.d <- 1/tau.d
tau.g ~ dgamma(0.001, 0.001)
var.g <- 1/tau.g
tau.e ~ dgamma(0.001, 0.001)
var.e <- 1/tau.e

# total residual deviance
totresdev <- sum(resdev[])

¥
# END
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